Support randonnée pour antenne HF-Pro2

Le Père Noël est passé, cette année il a déposé pour moi une antenne raccourcie HF-Pro2 utilisable de 7MHz à 30 MHz et 50 MHz un chouette idée pour le portable lors des randonnées en montagne ou en vallée. Afin de pouvoir être le plus léger possible j’ai commandé un petit support à 9€ sur internet pour pouvoir fixer la base de l’antenne à un bâton de marche. Dès lors que l’antenne est reliée à un coaxial de 50 Ohm il est impératif que l’impédance au bas de l’antenne accordée soit égale à 50 ohms, le plan de masse est donc indispensable. La solution que j’ai trouvée est de réaliser trois radiants de plus de 3m réalisés avec trois fils conducteurs 2.5mm multibrins qui permet de tenir le bâton support d’antenne et d’assurer une liaison avec les piquets métalliques de maintiens et le reste laissé à courir sur le sol. L’intérêt est de pouvoir enrouler les fils dans le sac à dos et de ne pas me balader avec un pied photo uniquement pour une antenne.

Voici la réalisation et les essais en photo:

 

 

Réception de SAQ sur 17,2 KHz le 24 décembre 2023 à 9h00 heure locale

La réception c’est effectuée sur deux moyens différents. le premier moyen est un antenne champ électrique différentielle qui sera présentée dans un deuxième article ainsi que l’antenne delta-loop qui donne ici de bien meilleurs résultats en raison de sa taille et de sa hauteur. Les deux systèmes étaient directement connectés à un enregistreur numérique HN4 permettant l’enregistrement des signaux au format .wav sur 16 bits et avec une fréquence d’échantillonnage de 96 KHz. Les deux enregistrements ont ainsi permis une comparaison entre les deux systèmes. Même si les deux enregistrements sont exploitables il en reste pas moins que celui de la delta-loop est bien meilleure. Néanmoins il est à noter que la delta-loop avec le transformateur d’impédance n’offre qu’une bande passante réduite et donc limitée aux VLF alors que l’équipement différentiel permet des enregistrements à fréquence plus basses (ELF) en raison de la faible capacité d’entrée du système ainsi qu’une impédance d’entrée très importante. Le système différentiel offre également un gain en tension de +6 dB avant injection dans l’enregistreur numérique.

Antenne pour la réception VLF de SAQ sur 17,2 KHz

Le système d’enregistrement est composé d’une antenne en triangle isolée du sol avec le point haut à environ 8m et la base à 20 cm du sol. Le branchement est effectué au centre de la base du triangle à l’aide d’un transformateur ferrite TDK en matière N30 acheté chez TME (https://www.tme.eu/fr/details/b64290l0038x830/anneaux-de-ferrite/epcos/) avec la référence B64290L0038X830. Les propriétés de ce tore ferrite sont un AL=7000nH. Autour de ce ferrite j’ai pris soin de bobiner 25 tours de fils de cuivre au primaire et 2 fois 54 tours au secondaire. Ce tore n’est initialement pas dédié à cette application mais à la réalisation d’un autre préamplificateur différentiel à base de transistors appairés SSM2212 configurés en base commune avec entrée les émetteurs c’est la raison du double bobinage avec point milieu qui ne sera cette fois pas utilisé car le préamplificateur n’est pas encore prêt. Les deux bobinages de sortie sont donc reliés ensemble en série  pour donner une bobine de 108 tours.

La sortie du tore est reliée à la carte son et à l’enregistreur numérique à l’aide d’une ligne coaxiale, normalement la plus courte possible mais permettant d’être suffisamment éloigné de l’antenne pour ne pas apporter de perturbations radio électriques en particulier le 50 Hz de l’habitation.  Pour ce qui me concerne il y avais quand même environ 30 m de coaxial 10,3 mm faible pertes du type Hyperflex-10. La carte son utilisée est une U-PHORIA UMC204HD réglée sur une fréquence d’échantillonnage de 96 KHz / 16 bits. Les logiciels utilisés sont SpectrumLab et SAQrx pour la démodulation CW et également un enregistrement audio (BF) du signal CW (morse) démodulé.

Écouter ci-dessous le signal CW :

Vidéo de la réception:

Réalisation d’un préamplificateur ELF/VLF Différentiel à base de INA121 ou AD8221

En février 2023, il y a presque un an déjà, je réalise un nouveau préamplificateur pour antenne raccourcie champ E en différentiel. L’équipement doit être transportable sur le terrain et de faible consommation afin d’être alimenté par deux piles 9V pour créer une tension symétrique +9V/-9V.  La construction tourne autour d’un amplificateur opérationnel d’instrumentation Analog Device du type INA121 ou AD8221 selon les possibilités d’approvisionnement. Le préamplificateur est dans un boîtier aluminium avec une sortie BNC et 3 petites prises bananes afin de pouvoir déporter l’alimentation avec l’enregistreur numérique à une dizaine de mètres de l’antenne et du préamplificateur.  Les étapes de la construction:

– Réalisation du schéma
– Simulation sur logiciel de CAO LTSpice
– Réalisation d’une BOM et du PCB avec DesignSpark
– Essais en laboratoire (mesure de la bande passante et du gain)
– Essais sur le terrain avec plusieurs types d’antennes (tiges aluminium, boîtes de conserves espacées)

Les essais m’ont conduits à modifier le préamplificateur par la suppression de la capacité entre les deux entrées (C5), l’ajour de deux résistance en série à l’entrée pour réduire la bande passante (filtre passe bas) afin de diminuer les phénomènes de transmodulation avec des signaux plus forts au dessus de 100 KHz.

Télécharger ici le dossier en PDF >>>>> Preamp_diff_2023

Une nouvelle antenne a également été réalisée par la suite avec deux boites métalliques isolées  l’une de l’autre (boîtes à café). Les deux boîtes métallique faisant office d’antenne champ E  sont placées dans deux pots de fleurs en terre cuite (voir photo) l’ensemble est rempli de sable afin de limiter les phénomènes de vibrations sur l’antenne ainsi que les frottements avec le vent qui produit des artéfacts et des signaux parasites non désirés. Chaque boîte métallique est reliée à une des entrée différentielle de l’amplificateur très haute impédance.

 

 

Détection de SID en JN19DA les 1er et 3 mai 2023

Une belle perturbation ionosphérique à début brusque (SID) a été enregistrée à Domont le 1er mai 2023 vers 13h00 UTC, 15h00 heure de Paris et plusieurs  le 3 mai 2023, à l’aide de l’enregistrement continus et automatisé du niveau radio électrique des signaux électromagnétiques de la stations VLF: GBZ située en Angleterre dans le cadre de la surveillance SID (sudden ionospheric disturbance) ou perturbation ionosphérique à début brusque. La perturbation se traduit par un accroissement ou une baisse soudaine de l’absorption des ondes radio. Elle peut parfois (très rarement) entraîner une interruption complète des transmissions radio pour des durées de quelques minutes à plusieurs heures.
La perturbation ionosphérique est aussi connue pour améliorer la propagation des ondes très basses fréquences. L’AAVSO (American Association of Variable Star Observers) définit une perturbation ionosphérique soudaine ainsi : « L’ionosphère terrestre réagit à l’intense rayonnement X et UV libéré durant une éruption solaire. La surveillance du signal de l’émetteur très basse fréquence GBZ distant de plusieurs centaines de Km de la station de réception est située à DOMONT en JN19DA a ainsi permis de détecter une éruption solaire qui s’est produite le 1er mai 2023 à 13h00 UTC. La station de réception est située à DOMONT en JN19DA. Cette station est composée d’une antenne cadre magnétique de 60 tours et de 1,2 m de côté situé en sous-sol. L’enregistrement qui est réalisé en continu correspond à la valeur RMS (Root Mean Square) ou valeur efficace de l’amplitude du signal qui provient de l’émetteur VLF GBZ. Cet émetteur est principalement utilisé pour transmettre des ordres aux sous-marins en 19,580 kHz. La station de transmission d’Anthorn d’indicatif GBZ est située près d’Anthorn, dans le Cumbria, en Angleterre.
SId 1er mai 2023

 

Quelques enregistrements SID réalisés en Août 2022 à Domont (95)

Enregistrements réalisés sur 24h, événements survenus le 28 août à 16h UTC et le 29 Août 2022 à 11h UTC enregistrements de GBZ réalisés à Domont en JN19DA avec données du flux-X-ray provenant de GOES.
Logiciel sous LabVIEW, antenne magnétique 60 tours en sous sol et préamplificateur différentiel (ampli-opérationnel OP27) selon schéma  RCM2 – IK1QFK 

Enregistrement SID du 28 août 2022 par F4IEW

Enregistrement du flux X-Ray le 28/08/2022, source GOES
Enregistrement SID du 29 août 2022 par F4IEWEnregistrement du flux X-Ray le 29/08/2022, source GOES

OND’EXPO, Lyon le 2 avril 2022, Conférence sur les ELF – VLF

Conférences scientifiques et techniques : Apprendre.

les SID (Sudden Ionospheric Disturbances), découverte, comment les étudier, fabriquer son récepteur, quels logiciels, quelles antennes. Les ELF-VLF leurs caractéristiques. Un monde particulier à découvrir, comment les écouter, comment communiquer.
Par Franck DURAND, F4IEW    (Cliquer sur l’image pour télécharger la présentation PowerPoint)                Onde_Expo_VLF_F4IEW_V8

 

Nouvelle antenne pour l’étude des VLF et Sudden Ionospheric Disturbance (SID)

Ces derniers mois quelques jours (Week-end) ont été consacrés à la conception d’une nouvelle antenne VLF constituée de boîtes de conserves à l’intérieur d’un tube PVC et de sable.

Le préamplificateur VLF a été conçu et réalisé par mes soins, il comporte une batterie rechargeable 9V avec un système de recharge à courant constant afin de ne pas introduire de perturbation (parasites). I’antenne active est dotée d’un panneau solaire pour la recharge de la batterie. Les tests ont déjà montré une très bonne tenue dans le temps (autonomie de plus d’une semaine avec une météo très grise !).

Mais ce n’est pas tout, il faut aussi pouvoir analyser correctement les signaux exportés depuis le logiciel de traitement SpectrumLab et c’est la raison de deux développement informatique sous LabVIEW version 2020. Réalisation d’un programme de visualisation et d’intégration des courbes ainsi qu’un autre programme permettant de récupérer automatiquement les fichiers flux rayon X (X-ray) sur un ou trois jours au format Json provenant du satellite GEOS. Les fichiers sont téléchargés sur le site dédié via le protocole HTTP et chaque champ est parsé vers un fichier compatible Excel (.CSV) et également affiché dans un graph.

Quelques images de l’installation, du programme et des résultats d’enregistrements.

 

TM733 KENWOOD LCD Backlight

Suite à l’achat d’un FT733 d’occasion le rétro éclairage ne fonctionnais pas.

Remplacement du transistor Q1 2SB1149 entre l’alimentation 13,8V et les deux branches de lampes( 2×2 lampes de 6V) par des LED 3V X 4 en séries (Réf.: MCL034SWC-YH1: LED 3mm 36° Blanc chaud, réf. Farnell 1581175)

Démontage de la face avant, remplacement du transistor par un équivalent disponible en France: BD882 (Transistor Darlington)

 

 

The June 2020 Eclipse Festival of Frequency Measurement

En ce moment je prépare ma participation à l’événement « The June 2020 Eclipse Festival of Frequency Measuremen 20 June 2020 0000 to 22 June 2020 2359 UTC »

introduction
Les changements de densité électronique ionosphérique causés par la météo spatiale et les changements solaires diurnes sont connus pour provoquer des décalages Doppler sur les trajets des ondes HF. La première tentative de HamSCI pour mesurer ces déplacements Doppler a eu lieu pendant l’éclipse solaire totale d’août 2017. Une mesure minutieuse est prévue lors de l’éclipse de 2024. Dans le cadre du centenaire du WWV, 50 stations ont collecté des données de décalage de fréquence par effet Doppler pour le Festival original de mesure de fréquence, démontrant l’interêt de la participation des bénévoles dans la collecte de ces données. En juin, HamSCI demande à toutes les stations radio amateur, auditeurs en ondes courtes et autres personnes capables de faire des mesures de fréquence HF de haute qualité afin d’aider à collecter des données de fréquence pour l’éclipse du 21 juin.
inscription préalable nécessaire depuis le site internet, instructions également disponibles. Utilisation du logiciel FLDIGI en mode Analyse de la fréquence 9,999 Mhz (Station BPM* en chine) écoute réalisée en USB avec ALC déconnectée si possible.

*BPM est l’indicatif d’appel du service officiel de signalisation horaire à ondes courtes de la République populaire de Chine, exploité par l’Académie chinoise des sciences, diffusant à partir du Centre national des services horaires du CAS dans le comté de Pucheng, Shaanxi, à 34 ° 56′55.96 ″ N 109 ° 32′34.93 ″ ECoordonnées: 34 ° 56′55.96 ″ N 109 ° 32′34.93 ″ E, à environ 70 km au nord-est de Lintong, ainsi que le signal horaire à ondes longues BPL du NTSC sur 100 kHz.

Les rendez-vous:
Control Day: 14 June 2020, 0000 – 2359 UTC
Data recording starts: 20 June 2020, 0000 UTC
Data recording ends: 22 June 2020, 2359 UTC

https://hamsci.org/june-2020-eclipse-festival-frequency-measurement

Conférence ELF VLF à L’ARAM 95, 14/02/2020

La propagation et le spectre TLF/ELF/SLF/ULF/VLF
 Quelques stations VLF à portée d’antenne
 Modification de la propagation: tremblements de Terre et Meteor 
 Comment recevoir les ELF/VLF 
 Construction du récepteur « Darjeeling V2. » selon les schémas de F6AGR
 Quelques réalisations électronique pour écouter et enregistrer les ELF/VLF
 Les différentes antennes de réception 
 Emissions amateurs en VLF
 Les antennes « Earth Probe » 
 Quelques liens internet utiles
Ces ondes se propageant dans l’eau de mer, elles sont utiles pour la navigation et la communication avec les sous-marins.
Ces ondes peuvent aussi pénétrer des distances importantes dans la roche et le sous-sol, ce pourquoi elles sont utilisées par certains systèmes de communication minière et s’utilisent en géophysique dans l’exploration du sous-sol (couches géologiques, cavités, etc.…).
Ces fréquences sont aussi exploitées pour détecter certains phénomènes naturels, générateurs d’impulsions radioélectriques (foudre et certaines perturbations naturelles du champ magnétique terrestre)

Réceptions ELF et VLF avec RX Darjeeling V.2.1

La réalisation d’un préamplificateur ELF VLF dédié aux enregistrements très basses fréquences à été réalisé en composants traversants et CMS d’après le montage proposé par Jean-Louis (F6AGR). Jean-Louis à très souvent utilisé ce modèle dans le cadre de ses enregistrements sur les Météores (voir publications en références).

Des essais ont été effectués sur une antenne dipôle de 2x15m puis sur des petites verticales, horizontales et ensuite sur une antenne ferrite que j’ai réalisé avec un matériau 3B1 (Ferrite ROD CORE ROD10/200).

Le développement de ces outils sera utile dans le cadre de la mise en oeuvre de mon projet de recherche sur la communication des végétaux.

Quelques photographies de l’antenne Ferrite de 6,37 mH et des différentes réceptions réalisées durant le Week-end.

Antenne Ferrite (matière 3B1) de 6,37 mH réalisé avec du fil de cuivre émaillé Diam. 0,2mm

FTA the First strong VLF reception with Darjeeling V2.1 reception amplifier just finished. FTA listened on 20,9 Khz Locator JN18qn.

The transmitter of Sainte Assise (JN18gn) is a transmitter for very long waves VLF (very low frequency), installed in the area of ​​the castle of Sainte-Assise Seine-Port in Seine-et-Marne. Its antenna was carried by eleven pylons of 250 meters and five masts of 180 meters. At its inauguration in 1921, the transmitter was the most powerful in the world and covered the entire world. In November 1921, the first French radio program was conducted on a trial basis using a 1 kW longwave transmitter. Mademoiselle Yvonne Brothier performed La Marseillaise, La Valse de Mireille and an air of the Barber of Seville. Subsequently, the site was a testing center for television. Requested by the Kriegsmarine in 1941 to allow communications between Berlin and the U-Boots. Paradoxically, St. Assise did not suffer from Allied bombing and all the antennas survived. As provided for by the October 1920 Convention, on 1 January 1954, the PTT resumed these installations. In 1991, part of the station was sold by France Telecom to the French Navy, to become the Marine Communications Center (CTM) of Sainte-Assise in charge of unilateral communications with submarines underwater. The site, inaugurated in 1998, became a military site guarded by a rifle company.

Quelques références sur ce sujet:

Searching for meteor ELF /VLF signatures lien:
https://hal.archives-ouvertes.fr/hal-00638548/document

Evidence for VLF radio waves propagation perturbations associated with single meteors Jean-L. Rault International Meteor Organization Radio Commission :
https://hal.archives-ouvertes.fr/hal-00638549/file/Poster_M-SID_Jean-L_Rault_s.pdf

ELF/VLF radiation produced by the 1999 Leonid meteors
https://www.researchgate.net/publication/225202936_ELFVLF_radiation_produced_by_the_1999_Leonid_meteors

Magnetic Loop Antenna Theory
https://sidstation.loudet.org/antenna-theory-en.xhtml

A very low noise preamplifier for extremely low frequency magnetic antenna
http://www.jos.ac.cn/app/article/app/doi/10.1088/1674-4926/34/7/075003?pageType=en

Ferrite 3B1
https://www.ferroxcube.com/upload/media/product/file/MDS/3b1.pdf

Réalisation d’un préamplificateur VLF et HF

La réalisation d’un préamplificateur VLF/HF à été réalisée afin de rendre active l’antenne cadre que j’ai déjà réalisée et dans un deuxième temps lui adjoindre une bobine de 400 spires / 200 spires / 50 spires pour couvrir la réception de 16 KHz à 600 KHZ. L’écoute de SAQ Grimeton sur 17,2 KHz et des émissions Navtex sera donc plus facile et possible en mobilité. Quelques essais déjà réalisés montrent un très bon fonctionnement sur les bandes 80m et 40m avec des signaux qui passent de S7 à 9+20 !

D’après les mesures et la simulation effectuée avec le logiciel LTspice le gain en tension est d’environ +15 dB et le gain en puissance sur une impédance d’entrée et de sortie égale à 50 Ohms est d’environ 8 dB (l’ensemble chute un peu sur la bande des 40m).

Ci-dessous quelques photos et fichiers utiles:
– Schéma du circuit
– Simulation entrée/sortie avec générateur sinusoïdal f=17,2KHz
– Photo du montage sur plaque prototype
– Fichier LTSpice du préamplificateur

Montage du préamplificateur VLF/HF

Schéma du préamplificateur VLF/HF

Simulation sous LTSpice avec une entrée sinusoïdale de fréquence 17,2 Khz et une amplitude de 10mV en entrée, la sortie du signal est représentée en bleu.

Observation d’échos radar sur la tête des météorites avec une clé USB SDR RTL et le logiciel Spectrum Lab

Pour ces réceptions la clé SDR est réglée sur l’émetteur radar de Graves (143,050 MHz) qui est situé près de Dijon. Ces enregistrements ont été réalisés dans les Alpes les 11 et 12 Août 2019 (Locator JN36BE). Le radar de GRAVES est un radar de l’armée française pour la détection des satellites et des débris spatiaux. Le radar est très puissant peut être utilisé pour la détection des météores avec un équipement très simple comme une clé de réception VHF USB RTL2832U . Merci à Jean Louis Rault (WGN 2010) qui m’a montré qu’il est possible de détecter plusieurs dizaines de météores par nuit. L’intérêt des observations radar, c’est que la détermination de la vitesse par effet Doppler est beaucoup plus précise qu’avec les dispositifs optiques. L’idée est de combiner les observations optiques pour la géométrie et le radar pour la vitesse. La vitesse est le paramètre clé pour déterminer le demi-grand axe des orbites et donc la provenance des objets.

Enregistrement du 12 Août à 00:42 UTC

Enregistrement réalisé le 12 Août 2019 à 02:34 UTC en JN36BE

Enregistrement du 12 Août 2019 à 04:42 UTC en JN36BE

Enregistrement du passage de la station ISS

Réception de NDB indicatif ZJT 340 KHz avec le récepteur RR-SM-6A

Le RR-SM-6A (appellation armée de l’air) est un récepteur superhétérodyne simple changement de fréquence sur les sous-gammes A à D, 105 et 1.700 kHz, double changement de fréquence pour les sous-gammes E à G, 13 à 115 kHz. Il s’agir d’un récepteur très basse fréquence (V.L.F.) qui était destiné particulièrement à l’Armée de l’Air.

Réception en JN19DA sur  la fréquence de 340 KHz de l’indicatif ZJT en code morse (CW).

WSPR sur 136 KHz en JN36HE Col de l’encrenaz

Description de l’antenne active large bande :
L’antenne est un monopôle vertical court (E-field) qui peut être vu comme la fin d’un quart d’onde entière, où la distribution de la tension est (presque) constante et la diminution de distribution de courant est (presque) linéaire.
E-Field: composante électrique du champ électromagnétique
L’antenne est constituée de :
– Un tube métallique de 1m en inox positionné à 80 cm du sol
– La mise à la terre est réalisée au pied de l’antenne uniquement par les 3 brins à 45 degrés entre le bas du préamplificateur et la terre au pied de l’antenne. Les brins en cuivres multiconducteurs font également office d’haubanage de l’antenne.
– La capacité série de l’antenne est d’environ 10 pF à laquelle s’ajoute la capacité apportée par les deux brins horizontaux en haut de l’antenne (quelques pF).
– L’impédance série impédance de l’antenne et en particulier sa capacité série forme un filtre passe haut avec la capacité d’entrée du préamplificateur. Le choix du transistor d’entrée et la résistance série qui sera éventuellement ajoutée sont à prendre en considération.
– La résistance de rayonnement est très faible car la longueur d’onde λ =c/f est très grande vis-à-vis de la taille réelle de l’antenne est extrêmement faible car proportionnel à H/λ avec H=1m et 10Hz < f < 30 KHz

Les essais réalisés dans un contexte radioélectrique difficile (montagnes, chalet et perturbations électriques) ont néanmoins permis quelques réceptions.

Quelques enregistrements ELF/VLF réalisés en Août 2022 en JN36HE

Campagne d’enregistrement ELF-VLF en JN36HE et environs
Août 2022 par F4IEW

  • Premières mesures effectuées sur le Mont Chéry (74) – Locator JN36HE.  Les premières mesures ont été fortement perturbées par les clôtures électriques nécessaires à la protection des vaches. Les signaux VLF sont néanmoins de moyenne qualité permettant uniquement de visualiser les signaux de 16 KHz. Les perturbations engendrées par les clôtures électriques interviennent principalement dans le spectre de fréquence 10 Hz à 20 KHz en proximité immédiate de la clôture et 10 Hz à 1KHz à quelques Km (constatations d’après les deux enregistrements réalisés)
  • Deuxièmes mesures effectuées au Col de Basse (montagne en face)

Télécharger le document complet (schéma du préamplificateur, détails sur l’antenne, résultats des mesures, script pour la réalisation de la FFT avec SciLab.:
Télécharger ici le PDF de la campagne_enregistrements_ELF_VLF_082022

mesures effectuées au Col de Basse (montagne en face)